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ABSTRACT

A deficiency 18 pointed out in Stevenson's method of reducing the solution of
electromagnetic scattering problems to a succession of standard potential problems
whose solutions determine terms in the low frequency expansion of the scattered
field. An alternate approack is presented, for perfectly conducting scatterers,
which not only removes the difficulty but also is simpler and more explicit than
Stevenson's method. The details of the analogous, though simpler, scalar scatter-
ing problems are also presented.

iv
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INTRODIUCTION

The purpose of this report is to describe a method of reducing scattering
problems to a series of potential problems. We deal with a general class of three
dimensional scatterers, smooth, closed, bounded, in short those surfaces for which
Green's theorem in any of its guises may be invoked. The solution of a scattering
problem, for arbitrary excitation, is expressed as a series in ascending powers of
wave number, k. This series is known by a variety of names, including Rayleigh
series, quasi-static series, and low frequency expansion. That the first term in
such a series could be found as the solution of a potential problem was observed by
Rayleigh (1897} who determined this term explicitly for a variety of scatterers of
both acoustic and electromagnetic waves. For scalar scattering, the determination
of succeeding terms in this series as solutions of potential problems has been de-
scribed, in varying detail, by Noble (1962), Morse and Feshbach (1953), and Dar-
ling and Senior (1965). (See Kleinman (1965a) for a more complete bibliography.)

The derivation of successive terms in this series for electromagnetic scat-
tering was described by Stevenson (1953a). Actually Stevenson described two meth-
ods, one for finding the general term in the series and a second special technique
for finding the first three terms. All of his specific calculations (Stevenson, 1953b)
were carried out using this special technique. No attempt to utilize the general
method for obtaining higher order terms has, to this writer's knowledge, been re-
ported, which indicates that if attempts were made, they were unsuccessful. More
likely, there were none. This is due to the fact that the analysis is sufficiently in-
volved to discourag = most efforts to derive more than three terms in a low fre-
quency expansion (that Stevenson treats the more general case of penetrable scat-
terers certainly doesn't help). For these, Stevenson's special simpler technique
suffices. An attempt to clarify the Stevenson method was made by Seuior and

Sleator (1964) and the present report may be considered an outgrowth of their work.
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The present work demonstrates that the method proposed by Stevenson for
finding the general term in the series needs clarification at best and at worst leads
to incorrect results. An alternate method, presexrving the spirit of Stevenson's
approach and indeed largely based on it, is presented which hopefully embodies both
clarity and correctness. Conciseness has been sacrificed in an attempt to minimize§
the chances of further obscuring the subject.

The procedure in the electromagnetic (vector) case is a natural extension of
the technique employed in the scalar case. For this reason, and z2lso to introduce
some notation as well as concepts in the simplest setting, the next section is de-
voted to a discussion of how scalar scattering problems may be reduced to the study
of a succession of potential problems. In Section 3 we describe Stevenson's method
for treating the analogous vector problem and show why it is unsatisfactory. Sec-
tion 4 presents an alternative to Stevenson's method which eliminates its short-

comings. Section 5 is devoted to an illustrative example.
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SCALAR S(IJIATTERING

In this section we show how a scalar scattering problem with Dirichlet or
Neumann boundary conditions may be reduced to a succession of "'standard" poten -
tial problems. These terms will be precisely defined as they are introduced.

Let B denote the boundary of a smooth, closed, bounded surface in Euclid-
ian 3-space (or the union of a finite number of such surfaces provided they are dis-
joint), let o denote the outward drawn unit normal at any point of B and let V be
the volume exterior to B. Erect a cartesian coordinate system with origin in B an
let T denote a radius vector to a general point (x, y, z) and ;B denote a point on B.

Furthermore denote by R the distance between T and ;B’ i.e.,

> > 2 2 2
R = Ir—rBl = \[(x-)LB) +(y-yB) +(z-zB) . (2.1)

The geometry is illustrated in Fig, 1.

Figure 1
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By a scalar scattering problem for the surface B is meant the determination
of how the presence of the surface perturbs an incident field, ¢inc' that is, finding
a function Q(?) such that

P+4)$ = 0 tev, (2.2)
lim ) _
I ~» 0 l‘(ar Q-ik ) =0, (2.3)
and either
- inc
P = -9y (2. 4a)
or
ad( T) a(bmc(‘)
on |a = =" on > w (2.4b)
=T, r=fg

Equation (2.3) is a statement of Sommerfeld's radiation condition which im-
elkr
r
tions (2.4a) and (2. 4b) are Dirichlet and Neumann conditions respectively. Specify-

plies that outgoing waves look like £(6,§) for large r. The boundary condi-
ing either one is sufficient to guarantee the existence of a unique function § hence
both the values of the function and its normal derivative may not be assigned arbi-
trarily. We will consider the Dirichlet and Neumann problems separately but the

analysis is quite similar.

The starting point is the Helmholtz integral representation of regular solu-

tions of (2.2); viz,

ikR  ikR
o 3 e e 8Q
4)(1-)—--—-47r {d’an - TR 3> (dB. (2. 5)
B

The integration is carried out over the surface and the normal derivative is

+V. Nextwe assume that the unknowa function ® may be expressed as a conver-

4
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gent power series in k. Actually this need not be assumed, that is, it may be
proven that there does exist such an ex?a.nsicn, convergent for k sufficiently small
(see Werner, 1962 and Kleinman, 1965b). It should be noted that we are consider-
ing k real and positive though the results may be extended to include complex val -
ues of k. We write the expansion

(0]
$z) = _S_ , ¢ (F)i™ (2.6)
m
m=0
where the factor i is included in the expansion parameter merely as a convenience.
The functions Qm are independent of k and each of them may be determined as
follows.

Since e is an entire function, the series

Q
. . 1
1=0 )

converges for all k. Substituting (2.6) and (2.7) in (2. 5), we obtain

< m 1 . a . m 9 S 'R !
2 b, (Ba™ = -\ an Zq)m(rB)(ik) EZ T
m=0 m=0 1=0
L. 11 2
WD L g,0m).
£=0 ) m=0 (2.8)

As long as lkl is strictly less than the radius of convergence we may interchange

summation and integration and reorder terms in the double series obtaining

) (0] 1
- 1 g-m-1_tm-13
Z q’m(r)(ﬂ‘)m = Z;Z Z -m)! {(ﬁm dn o ’ (5 }d

(2.9)
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Equating coefficients of like powers of k, with an obvious change in notation,
yields

1
-
a ‘LZ i d ot-m-1__t-m-138
&™) = 4 £ (I-m)! Sﬂ{(bm a0 © R an @mde, (2.10)

1=0,12,...

In order to determine (iv , we must employ the boundary conditions, hence we
must distinguish between the two problems under consideration. Whether the inci-
dent field is a plane wave, point source, or linear combination of suchk sources it
remains true that the representation of the incident field is analytic in k. Thus we

may write

HP

(Q_|
Z drem’ . (2.11)
£=0

The boundary conditions (2. 4a) and (2. 4b) then imply that either

65 = -0, (2. 12a)
or
9 1 d_ zinc,a :
Y 2 = - (I)l (T) .2 (2.12b)
B B

Consider first the Dirichlet problem, (2.12a). Inserting the boundary values in the

integral representation (2. 10) produces the system of equations

I3
1 inc 9 f-m-1 _f-m-1 3
= - — ; % + 2
(I)l 47 ﬁ,_;@" {f- m)' {m on R B an g)m} elE
B (2.13)
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We treat first the case when £ =0. Equation (2.13) becomes simply

1 aQo

> i inc 9 1 1 Y
Qo(r) - r d)o on RdB- 4 R dn B (2.14)
B

-

The unknown term on the right is clearly an exterior potential function or in the
language of potential theory (e.g. Kellog, 1929) the field of a single layer distribu-
tion of density 8@0/ on. That is, if we designate by ¢o the unknown function,

a1\ 1 "
¢o(r) T 4r R on a8 (2.15)
then ¢0 satisfies the equation
2,
v () =0, TeV , (2.16)

and ¢o is regular at infinity in the sense of Kellog, viz.

2 a¢o

or

Iim
r
r— @

lim

<. (2.17)
r—m

<
lr¢ol B0

Furthermore, with the boundary condition (2. 12a) and the expression (2.14),

the values of ¢o on B are specified, i.e.,
a inc,a lim 1 inc 9 (1 )
= - + —_ ———{ —
¢o(rB) (bo (rB) r—r, 4 Qo dn ‘R & (2.18)

Note that the integration in (2.18) must be carried out befose the limit is taken so
the integrand is always defined. With this proviso the right hand side of (2.18) is
well behaved and completely specified in terms of the incident field. Equations
(2.16)-(2.18) constitute a standard exterior Dirichlet potential problem which has a
unique solution. Next we show that succeeding terms (ﬁ , may be written in terms of

solutions of similar problems. To this end assume that Q)o, (}1, 5o '¢l—1 are all
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known. Then (2.13) may be written

(f)l(r) = F(T)+$,T) (2.19)
where
1
- _ L 1 inc 3 ot-m-1
FiT) =-4 — (£-m)’ (}m B B
m-
B
1-1
_ i 1 f-m-1 an 4B
4 5 (2- m)! on
B
and
od
> 1 1 1
’1‘ ) "2 \R am B
B

With the assumption that all (b's are know up to. but not including Q v F I(T') is a
known function. Clearly § 1(?) is again a single layer distribution, satisfies (2. 16)

and (2.17), and is uniquely determined with the boundary condition
B ) = -G )-F @) (2.20)
£ B { B I B

Again, care must be used in letting F—ffB in one term of F, but there is no in-

trinsic difficulty. Thus @l is determined in terms of a known function F ,anda
solution of a standard exterior Dirichlet potential nroblem, § , We have shown that
is true for £ =0, and also for £>0 provided (b -1’ (I)l__z, .. .(bo have previously
been found. The solution of the Dirichlet scattering problem is then given by (2. 6).
An exactly analogous procedure may be followed for the Neumann boundary

condition, (2.12b). Corresponding to (2.13) we have
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1
> _ 1 E 1 f-m-1 3 gzinc 0 l-m—l}
Ql(“ T 4 (£-m)! {R on ¢m +(bm am B @.21)
m=0 B

Furthermore this may be written

tI)l(‘f) = Gz‘?"‘"’x‘?’ (2.22)

where

B

Ji
-, ‘i’ 1 "m-l _Q_
G!(r) T 4x Zm=0 (£- m)' 3 on ém e

i-1

1 1 d f-m-1
0 2 5
47 mg (- m)! (ﬁm an = dB,

the second sum is identically zero if £ =0, and

viF) = ?l,-r— 7 'aaZ Cl%)dB '

G ' is completely determined if él—l’ . .(ﬁo are known and wl('f') is a double layer
distribution. That is, ¢ . is the solution of a standard exterior Neumann potential

problem, namely,

Vzwl(?) =0, TeV

Y ' regular in the sense of Keliog, (2.17),

and
oG

vl
? T
B B B
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We have thus demonstrated that for either Dirichlet or Neumann scattering
problems successive terms in the low frequency expansion may be determined by
solving a succession of standard potential problems. That is, the first term is the
solution of such a potential problem the second term is expressed in terms of the
first and the solution of a potential problem, the third is given in terms of the first
two and a potential solution, etc.

Before closing this section, a word should be said about low frequency ex-
pansions of the far field. The Rayleigh series, (2.6), may be considered as an
expansion of the near field which, if al! terms are included, is also valid in the far
field. If only a finite number of terms are known, tnen the truncated series does
not in itself give much useful information about the far field. Such information is
available if we again make use of the integral representation (2.5). To this end

note that for large r

T ‘r‘B
3 - o q A &
ikR ikr - ik - ikr-ikr- rB
€ - ¢ -I5l, #= ¢/
R T r » T=Irf, r=rjr (2.23a)
and 2 N A -
eikR elkr—lkr-rB
ey M
VRV ikr ——/——— (2.23b)

If (r, 6,$) and (rB, GB’ ¢B) are spherical coordinates of points T and ?B respec-
tively then

r-r cosfcosfy+ sinfsin GBcos(jb— ¢B{l ) (2.24)

B 'B
Substituting (2.23a) and (2.23b) in {2. 5) we obtain, for large r,

-

ikr -ikfe £ -ikT-F o |
Gty ~ — {gbucﬁ-fe B BéngB. (2.25)
n

B

10
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-ikr. ¥
Now if we substitute expansions of ¢ and e B in the right hand side of (2.25)

and rearrange terms we obtain

f-m BQ
(-1) & o J-m [a a m
@(l‘)fv 2!—_0‘()1() ——(l m)' (r- rB) Ql er-l.- an >dB

(2.26)

where Q =

Examination of equation (2.26) reveals that knowledge of a finite number of terms in
the low frequency expansion of the near field (the Qm's) provides similar informa-
tion about the low frequency expansion of the far field coefficient, i.e. the coeffi-
cient of e / r. More specifically, in the Dirichlet case, when the houndary con-

ditions specify d)m on B for all m, then knowledge of the first 1 —Zg

on
9, 24 89\ o . .
s s ean will provide, with equation (2.26), the first £ terms of
on on on 3 @

the far field expansion. In the Neumann case, ( on B given for all m) the

on
first £ (} 's will apparently give £+1 terms in the far field. However, it may be

shown that, whether Q) is a plane wave or a point source,

inc
a(}o
Jn

dB =0 (2.27)
B

hence only { terms in the far field are specified. Or another way of saying this is
that, in the Neumann problem, f near field terms produce £+1 far field ierms but

0
the first term, i.e., the coefficient of (ik) , is always zero.
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STEVENSOI‘III'IS METHOD

In this section we shall describe Stevenson's attempt to generalize the
approach of Section 2 to electromagnetic scattering and pay particular attention to
the shortcomings, rather than the strong points (which are numerous) of Stevenson's
work. To effect some simplification, we shall treat only the case of scattering by a
perfectly conducting surface whereas Stevenson considered more general scatterers.
It seems clear, however, that both the criticism in this section and the correction
in the following section may be applied in the more general case.

The surface geometry and notation are the same as introduced in Section 2

and depicted in Fig. 1, which is here reproduced for convenience.

it
2 r

By an electromagnetic scattering problem for the perfectly conducting sur-
face B is meant the problem of determining how the presence of the surface per-

aine -&inc)

turbs an incident electromagnetic field, (E , H That is, we seek a solution

of Maxwell's equations

A a a a
VxE = ikH, V-E=0, rev (3.1)

o 4
li

vxH = -ikE , v-H=0

12
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subject to the boundary conditions
BBl o =8B, 2B -4 WL, 6o
B T='p B ™I
and the radiation coadition
Hm o xB) i = U A wxi) il = 0 (3.3)
r— o r— o
uniformly in T

(The divergence conditions and boundary condition on H are redundant, i.e. may
be deduced from the other conditions.)

In attempting to show how to reduce this problem to that of solving a series
of potential problems, the procedure parallels that followed in the scalar problem,
Corresponding to the Helmholtz integral representation (2. 2) we employ the expres-
sion derived by Stratton and Chu (see Stratton, 1941) which expresses the field at
any exterior point in terms of its values on the surface B. [Wilcox (1956) also de-

rives these formulas but strangely omits any reference to the Stratton-Chu work;]

B =+ v S ExPaB+ = e AxHdB- L v elkRa- EdB
r 4 X R . 47 R 47 R
B B

(3.4a)

a 1 eikR = ik \‘ e. = 1 e. =
H(T) = — Vx nxHdB- nxEdB- —— v i-HdB.
4n R 4r JB R 4m R

(3. 4b)

Recall that R is a function of the coordinates of two points T and ;B’ everything

else in the integrands on the right hand sides is a function of the integration vari-

ables (coordinates of fB) and V operate- on t. For future use, we denote by VB

the operator on ;B and note tcat

13
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eikR eikR
V-—-—-—R = - VB R (3. 5)

Now following Stevenson as well as the procedure in the scalar case we assume that
E and ﬁ may be expanded in series of powers of k, i.e.,

0 0

>, A N m > . N = - m

E(r) = E_(Tr)ik) , H(T) = Z H (T)(k) . (3.6)
m=0 = m=0 ™

As before, tiis assumption has been proven (Werner, 1963), that is, it is no longer
an assumption but a consequence of (3.1), (3.2) and (3.2). It is perhaps worthy of
note that the reason this entire discussion concerns three-dimensional scattering
problems is that convergent expansions of the form (3. 6) do not exist for two-dimen-
sional scattered fields.

Next we expand the free space Green's function, elkR/R, in a series, viz,

D 111
Z R (3.7)

£=0

then substitute (3.6) and (3.7) in (3.4a), (3.4b). After interchanging summation and

integration, reordering terms and equating like powers of (ik), we obtain

> 1 - 1 N 1
B(?)=— vx = |\ axE, R™ 4B
£ 4r m' I~-m

m=0

B
-1 1
+ L E L\ axH Rm’ldB-—l-—E Lo\a8 rR™las
47 m' f~-m-1 4r m' £~-m
m=0 m=0

14
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[} £~
== . A -1 — -1
H(r)=—1-Vx§ L\ 4y# g™ dB--LE L\ fxE R™ " dB
4 4r 5 m. L1 4r 50 m! L~-m-1
m= B B
L
L E Lvlaa rR™'as
47 m! {-m
m=0 B
(3.8b)
-1
where = 0 when £ =0,
=0
Furthermore, substituting the series (3.6) in Maxwell's equations (3. 1) yields
vxE =0 vxH =0 (3.9)
o o
-d b -
VxE, = H, vxH, = -E, 1=1,23.. (3.10)
v El=0 V-H,=0 =0,1,2,3 (3.11)
and the boundary conditions (3. 2) become
AxE = -fAxE"C , f-® = -f.H1"C (3.12)
1 53? 1 -s_f l f._g ! > >
B B o) TIp

These last equations result from the fact that, as with scalar sources, represen-

tations of electromagnetic plane waves or point sources are analytic in k. There is

one more condition of importance, With Maxwell's equations and Stokes'theorem it

is a simple matter to show that

~ ~
A 2 A >
n-EdB =0, n- HdB = 0 (3.13)
B B
It follows then from the series expansions (3.6) that
B-E,dB =0, 8-H,dB = 0 (3.14)
B B £=0,1,23...
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Stevenson then proceeds to show how the zeroth order terwis, Eo and ﬁo’
may be determined as solutions of potential problems. For the perfectly conducting
case this reduction to potential problems for the zeroth order terms will be included
in the general treatment of the following section, and, since we have no quarrel with
Stevenson's results for these terms, the details will be omitted here. To calculate
higher order terms, Stevenson proposes the following procedure: Suppose

1 £-1 £

ﬁo’ El’ .. ‘ﬁl-l’ ﬁo’ ﬁ y o H are known. To find El or ﬁ determine first .
a particular solution of {3.10), that is, find functions f‘l and G 4 such that

-l - - -»
VxFl = Hl—l and VxG! = -EJ!__1

The differences between these particular solutions and the true coefficients,

E f iz and ﬁ!-al, are gradients of unknown potential functions (not necessarily
regular at infinity) i.e.,

E = F+ V¢I (3.164a)
H, = G£+ V%, (3.16b)

Substitute (3.16a) and (3. 16b) into the integral expressiors (3.8a) and (3. 8b) respec-
tively, also introduce the boundary conditions, (3.12). There results equations for
E f and ﬁi which contain some known terms and some unknown. It is then possible
to show that the unknown terms are now exterior potential functions (regular at in-
finity) which may be determined as solutions of standard potential problems.

The process, once begun, appears to be both correct and, in the details of
its execution, ingenious. The source of irouble, however, is right at the beginning;

namely how does one determine particular solutions of the equations

) = [T = ..-. ?
VxE! Hl—l . VXHI El—l ?

16
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In a separate paper, Stevenson (1954) points out that necessary and sufficient

conditions for the equation

vx /(%) = 1(F) , TeV (3.17)
to have a solution are
vV-f=0 (3.18)
and n-fds = 0 (3.19)
B

where, if B consists of a number of disjoint surfaces, Bl’ .. 'Bi’ then (3. 19) must

hold for each separately, as well as the sum. With this we have no quarrel. Stev-

enson then goes on to assert that an explicit solution of the problem is given by

R | f(fv)
F(r) o= vx F(ffﬂ dv , (3.20)
v
all
space

provided that T satisfies (3. 18) and (3.19).

Since the integration is over all space, not merely V, the exterior of B,
this expression requires some explanation. In the first place, f(T) is originally
defined only exterior to B. To extend the definiiion to the interior, Stevenson pro-
poses to choose ? so that (3.18) remains true and that & . f is continuous at B.

This he accomplishes by choosing
£(T) = vu(D) , T interior to B (3.21)

where

V2u=0 ;

(3.22)

]
B
v}

17
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and

(3.23)

This is a standard in‘erior Neumann potential problem for u and has a unique solu-

tion provided that

R ﬂdB-‘-'D . {(3.24)

That (3.24) holds is guaranteed by (3.19). Thus the extension to the interior is
carried out, once this potential problem is solved. Equation (3.20) then is the re-

quired solution provided the integral exists, that is, provided
3
= O(1/r") as r—>w . (3.25)

Stevenson describes the proof and we shall demonstrate it in detail in the following
section where we again make use of this device. Now however, we accept it and
finally get to the heart ot the matter, namely, what do we do if f is defined origin-
ally in the infinite region V, but does not satisfy the necessary order condition at
infinity, equatlon (3.25)? This in fact is exactly what happens since E and H

£
vanish as 1/ r only for £ = 0 which allows us, using the method descrlbed to de-

termine El and H1 but apparently no higher order terms. (Actually we may go ore
term further since the 1/ r2 terms don‘t contribute to the integral.) Stevenson was
aware of this and proposed the following procedure:

If V is the unbounded region exterior to B and if f does not vanish at infin-
ity to the required order, first surround B by a surface Bo' Then redefine f ex-

terior to B0 in terms of the solution of an exterior potential problem, namely, let

i(T) = Vu, T exterior to Bo (3.26)

18
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where Vzu =0
au T s
-— =n-f (3.27)
M-ty \_f:?B
o s)

u regular at infinity.

This problem has a unique solution u and, since

O B = Mg = (3.28)
o) Jgn o

B B
0 0

it follows that u = O(i/ rz) hence T will satisfy (3.25). With f thus redefined, the
solution (3.20) exists and is vzlid in the portion of V interior to Bo where Bo can
be taken arbitrarily large.

With that, Stevenson apparently considers the subject closed. The implica-
tion is that since B0 may be taken arbitrarily large we may take it as a sphere
whose radius becomes infinite and then (3. 20} will represent the solution we seek
throughout V. But, unfortunately, if f were a function whose original behavior at

infinity was insufficient to guarantee existence of the integral in (3.20), then the

limit of the integral with f redefined may not exist as the radius of Bo becomes in-
finite, This argument by which the unpleasant behavior at infinity is avoided (that
is, confining attention to a finite volun.e, carrying out the calculation, and then
letting the volume become infinite) is not only employed by Stevenson but others as
well, e.g. Morse and Feshbach (1953, I, p. 53). It does produce the desired results
in many cases. For example, the process is valid whenever f is the gradient of a

potential function, regardless of its behavior at infinity (which includes the example

*If B0 is any surface entirely containing B and equaticns (3.18) and {(3.19) hold,

then (3. 28) follows from Gauss' theorem relating volume and surface integrals.
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used by Morse and Feshbach). That it may also yield unacceptable results is illus-
trated in the following example, where f is not \he gradient of a potential function
though still satisfies (3.18) and (3.19). This indeed is representative of the be-

havior one would encounter in actually attempting to find particular solutions of
(3.10),

Let

) = Vxr ix = mr (zly—yi ), (3.29)

= \fx2+y2+22 .

Clearly a particular solution of Vx F= f is
m 4

i

X

F=r (3.30)
However, let us attempt to determine a particular solution using equation (3.20).
First of all it is a trivial calculation to observe that (3.18) and (3. 19) are satisfied
with this particular f For this simple example we have no scattering surface B,
but with Gauss' theorem it is clear that for any closed surface B, SBﬁ- de =0,

Furthermore, the function f clearly misbehaves at infinity so that to use (3. 20) we
must employ the redefinition of f. Thus choose B0 to be a large sphere of radius

ro. Next define

- -
’£=f , r &r
° (3.31)
= Vu , rzr
0
where
2
Vu=290 rz2r
0
2. wvu =ﬁ-f
r=r r=r
o 0

u regular at infinity.
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Then
N (3
F{T) = — Vx —— dv . (3.32)
47 |T- r
all
space
Note that with our choice of Bo and E
A > - A A
n-f{ = f-erm?x = ?'mr:)n l(Gsin¢+¢cosecos¢) = 0. (3.33)
r=r

o

Hence u is a solution of the homogeneous Laplace equation, regular at infinity,

satisfying homogeneous boundary conditions on Bo which means that

us=s?o (3.34)
Thus
iE) ()
T ‘dV = P ——ry dv (3.35)
IT-F | it-T |
v V
all r §r
v, o

space

This integration is easily performed yielding

- 27
SR ST O A
=i dv = dr dg d6 rsin® == 1
)r-rv] v v vivoov [r-rvl X
rgr v 0 0
v, 0
m
47 [ m 3r A A
= — - i -vi 3 36
3 <r0 m+3>(21y ylz), r\<ro (3.36)
m+3
4 m ro A
== = r3 (zxy-yxz), r3y

Now we form F using (3.32) and find
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— 2 m m+2 ma mxrm—1 A
r)=-% + j - = —— <
K(r) 31'0 x m+3r lx m+3 T T ro
{3.37)
m+3
er A XA
=—-—-§(ix-3—r) r>or
3(m+3)r T °

It is a simple calculation to show that this F is indeed a solution of Vx F= f when
r< r.. However, it is also clear that f as defined in (3. 37) does not exist as

-
ro—bm. Furthermore, if 1'o remains finite, then the function F not only exhibits
an unwanted dependence on an arbitrary parameter ( the radius ro of Bo) but also
is discontinuous on Bo' This violates the tacit requirement that F be a differen-
tiable solution of VxF =T for all points in V.

How then do we proceed in those cases 'when Stevenson's scheme for finding
particular solutions apparently fails? One method would be to attempt to show that
the undesirable part of F is the gradient of a scalar function and can therefore be
neglected; the remaining part of f would still be a solution of VxF = f. In the

example above it is easily seen that F may be written

m+2 ma mxr -1 2 m

» < A

= j o — + 1=

F e SR T3 T ‘:’( 3 T, x) (3.38)

hence a particular solution of Vx f = -f: valid everywhere in V may be obtained
merely by deleting the term V (—-% r:nx) . In general, however, the process of
identifying the unwanted terms with the gradient of some functions may not be so
easily accomplished and in any event adds yet another complication to an already
involved procedure.

Rather than attempt to prove that this procedure can be made correct in the
manner indicated, we shall end this section having demonstrated that, as it stands,

Stevenson's procedure is ambiguous. In the next section we shall show that this
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problem of finding particalar solutions of (3.10) may be avoided entirely and the
process of determining successive terms in the low frequency expansion may be

made more straightforward.
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v
ELECTROMAGNETIC SCATTERING - AN ALTERNATE APPROACH

In this section we again treat the problem of extending to electromagnetic
scattering the method of Section 2 whereby scalar scattering problems are reduced
to a series of standard potential problems. Though the method described here de-
parts from Stevenson's approach, the debt to his work, both in ideas and technique,
is large.

We formulate the problem exactly as in Section 3 and the details will not be
repeated. The starting point for this analysis is the integral representation of the
coefficients in the low frequency expansions of the scattered field, equations (3.8a)

and (3.8b). That is, we write the field scattered from the perfectly conducting body

B, as
(s3] (s3]
EUN - 1 - S . J§
E(T) = z :El(r)(ik) , H(T) = E H(TNik), (4.1)
=0 1=0
then the boundary conditions at the surface B are
ALEL ainc A & _ A ainc _
HXEI— ﬁxEl , n H£ n-H ™, £1=0,1,2... (4.2)
and, furthermore,
A-E,dB =0 ﬁ'ﬁldB=0 €=0,1,2,... . (4.3)
B B

The Stratton-Chu integral representation, after expanding in powers of k,

equating coefficients and using the boundary conditions may be written

B2y _ D __1__
Ee(r) = f(r)- pm v = dB (4. 4a)
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N
- = 4 —
H(F) Gl(ﬂ 2 VX 7 ¢B (4. 4b)
B
where
£
SN 1 1 2 =
F(F) = - — vx L\ axE™ rR™ lgp (4.5a)
! 4r m! I-m
m=0
B
] '\\ ! ¢
1 1 A 2 m-1 1 E 1 \ A 2 m-1
+ — —_— == ——
4n 50 m'J nx l—m-lR dB 4n ) m! VJ 1 El-mR dB
B m= B
and
f
2 a1 1 . m-1
Gl(r) = - v x DXHI-mR dB (4.5b)
m=1
£-1 £
+—1—E L\ axg?e p@lgg+-l > Lo\ 2 7% r™ g,
4 m' f-m-1 4 m! f-m
m=0 =0 B

Equations {4.4a, b} and (4.5a, b) hold for all £ =0,1,2, ..., however, the terms

l- 1 P -

5_-1: and Z are identically zero when £ = 0. Observe that F . and G g are ex-
m=0 m=1 R
pressed in terms of the incident field and preceding terms in the series for E and

ol -la wdn b -l = 3

-
> - s ‘__v *~
H, i.e., Eo, El' .. 'El-l’ Ho’ Hl’ ""Hf-l' Thus if we consider the probiem of

finding E ‘ and H y assuming that the preceding terms have already been determined,

e

then F P and G , are known functions.
The approach, ours as well as Stevenson's, is to show that the unknown
terms in (4.4a) and (4. 4b) are gradients of exterior potential functions which may
be determined as solutions of standard potential problems. Stevenson went to con-
siderable effort and complication to formulate these problems. The method of this

section, though still complicated, hopefully represents a simplification. In any
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event, the present procedure for finding E, and H p OF at least defining them in

£
terms of solutions of potential problems is based on the integral relation (4. 4a) and
(4. 4b) and does not require, as Stevenson does, first finding particular solutions of
Maxwell's equations.

Consider first the task of determining E l( T). We observe, and this is the
essence of the approach, that the unknown term on the right hand side of equation
(4.4a) is itself the gradient of an exterior potential function, a single layer distri-
bution of density 1 - E 0 It is possible to formulate a boundary value problem for

this term as follows. Let § ; denote the unknown potential, i.e.

1 L S
¢f = R dB (4.6)
B
Then
= +
E, = F, v¢j (4.7
where fi is known and
2 AL,
\% ¢¢ = 0 r in V

) ; regular at infinity in the sense of Kellog

’x‘le¢f = -ﬁx(ﬁznc+F)|

= 77
B B

This is rot quite a standard Dirichlet potential problem in that the boundary condi-
tion as given may be shown to specify the function ¢€ on the boundary to within a
constant, That is, specifying nxV¢[ on B is equivalent to specifying ¢£+c on B
where c¢ is constant but unknown. This constant is evaluated by solving the poten-
tial problem with the ambiguous boundary condition, constructing the corresponding

E p with equation {4.7) and then imposing the requirement
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n-E dB =0 (4.3)

The procedure for finding E ’ is thus seen to be reasonably straightforward
once we observe that the unknown part of E 0 is the gradient of an exterior potential.
This observation spares us much of the complication of Stevenson's approach.

The determination of H ’ requires more work since it is not obvious that the
unknown texrm on the right hand side of (4.4b) is the gradient of an exterior potential
except when £ =0, In fact it may be shown that when £ # 0, this term is definitely
not the gradient of an exterior potential function. Nevertheless it is possible to
retain some of the simplicity inherent in the determination of ﬁ ’ by adding a known
function to the unknown term such that the sum is the gradient of an exterior poten-
tial function. The determination of the function we must add agaia requires the
solution of a potential problem.

Thus we introduce a function g | as yet unspecified, into equation (4. 4b), ob-

taining

. . AxH
-p(T)+ —
BT)+ o VX R
B

H(F) =G (T)

y dB+§£('?) i (4.9)

It is well known and/or easily verified that a condition sufficient to guarantee that

a vector be the gradient of a scalar is that the curl of the vector vanish, i.e.
-l i
VxA =0 = A=W, (4.10)
Thus a condition sufficient to guarantee that we may writ

e

A
nxH

e e R

B

dB +§£('f) = W, (4.11)

is
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A -
1 nxH
——— - + b —
i VxVx R dB ngl 0 (4.12)

B

Since g , 18 a8 yet unspecified, we use (4.12) as an equation for g , and seek a par-
ticular solution in terms of known functions, i.e., terms not involving H or E \
Since H appears, we must first put (4.12) in suitable form. First we use the vec-

tor identity VXVx = V(V- -V together with the fact that for & in V,

'—.rl-—=0

R(r, T B
to rewrite (4.12) as
A -
- 1 X%
VxE(¥) = - -~ VV- = dB. (4.13)
B
Recall that R is symmetric in T and FB (eqn. 2.1) and Vﬁl- = -VB—l-R , where V
operates on T and VB on ?B’ hence (4.13) may be written
Vxg(t) = —v \ v. L -axii dB (4.14)
{ 4 B R L ’
B
or, on employing the properties of the scalar triple product,
Vxg(F) = --= v \ 8.v. LxfidB (4.15)
) " 4n B R*M% - '
This we rewrite as
1 ﬁl 1 -
2oy 1 A LI
ngl(r) = - vin (VBx S VBXHf)dB (4.16)
B
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and, since Stokes' theorem implies
3
A Hl
n- VBx R dB = 0, (4.17)
B
we have
1 o a
ngl(r) il v R VBXHldB (4.18)
B
But Maxwell's equations (3.10) imply that
VBXHI(rB) = -El_l(rB) L>0 (4.19)
=0 L=
hence we have, finally,
A -
UxE(F) = -+ v - E’Z“ldB £>0 (4.20)
Xgpr) = 47 R ’ :
=0 , 1 =0,

We have thus succeeded in rewriting (4.12) in terms of known functions since we
have asswmned that E 4y 18 known. Now we want a particular solution of (4.20),
Clearly when £ =0, Eo = 0 is a solution. When £ >0, we employ Stevenson's
method for producing particular solutions of the equation Vx F= f. First of all
note that the right hand side of (4.20) is the gradient of an exterior potential function

(single layer distribution). Thus, introducing the notation

uA(T) = - == dB , (4.21)
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(4.20) may be written

ng‘l(i) = Vuf . fev (4.22)

Stevenson has shown that necessary and sufficient conditions for (4.22) to have a
solution are {;3 18), (3. 19)]

vuv‘;;3 =0 rev (4.23)

. e
du!
&B'?n' dB =0 (4.24)

The first condition, (4.23), is clearly satisfied since, as noted, uf

function. To show that (4. 24) is also satisfied we use Gauss' theorem to write

ou, Q A€ (‘ 2 e A e
-é-;dB = n-VuldB-——;\ Vu, dv + r-vu dB (4.25)
B \)B \Y% B

®
where Bco denotes a large sphere whose radius approaches infinity. The volume

is a pceential

integral term vanishes by virtue of (4.23) and the surface integral over Bo:) will

also vanish if

Vuj = o(l/r2) as r—+w . (4.26)
That (4. 26) is satisfied may be seen by examining the structure of uj exhibited in
the defining equation (4.21). Thus
£ B, (F))
€ . 1 -1 B
V I - i b4
ul(r) 7 v RE 7 dB (4.27)
B B

or, for r > max rB,
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et = - L \ 4.2 B .
V(i) =-7- v/, |8 E, (Op) ~r; P,(cosy)dB (4.28)
m=0 r
B
where cosy = cochosGB+sin9 sin&Bcos(ﬁ-ﬁB) and Pm is a Legendre polynomial

of order m.

The m =0 term vanisnes by virtue of (4.3),

n EldB =0 , 1=0,1,2
“B
hence
@
Vue('f') S S v § - n- (T, yro p (cos-y)dB (4.29)
/4 4 o rm+1 I—l B B :

From (4.29) it is clear that
€, a 3 2
Vu,(r) = o1/r") or ol/r) asr-w (4.30)

hence (4.26) holds which in turn means that (4.24) is valid. Thus we have estab-
lished that equation (4.22) has a solution. Furthermore we have shown, in the
process, that the right hand side of (4.22) is O(1/ r3) at infinity. Now we use Stev-

enson's soluticn to this problem.

We define an interior potential function, ui('f-) T interior to B, as follows.
2 i - — -, .
v ul(r) =0 r interior to B (4.31)
A- Vu(f) = - vuj(7)] (4.32)
\T=rp |r=rB

This is a standard interior Neumann problem for u;( r) and has a solution provided

that
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(

. A Vu;dB =0 (4.33)

Js

but this is satisfied by virtue of (4. 24) and the boundary condition (4.32). Recail
that n above is always directed from B into V, the exterior of B.

Now, according to Stevenson a particular solution of the equation {4.22) is

given by
£~ .
: v () v, u;(?v)
- ;- = 1 o, +
gl(r) o Vv x R dv R dv (4.34)

where Vi is the interior of B, and V the exterior.
To demonstrate that (4.34) is indeed a solution of (4.22) is a relatively sim-

ple calculation. Again using the identity VxVx = V(V - -Vz we have

A, S 1 vv uf (fv) Vv u;(;v) \
nglr)=z;v v- —R WtV —-—R'—dy
\% .
i
€, i..l
u,(f ) V u,(r)
1 v iy viv
- — ———dv + —e .35
47rV2 5 dv R dv , reV (4.39)
\' V.
i
but v (- “-—*‘-'l—w—\ = oft-T ) (4.36)
47rR(?-rv)) v E
therefore, for T in V,
€, a ia
4, e, s 1 vVul(rV) VVul(rV)
= ") 4 —— ; o 4 . Y S - - ¢
ngf(r) Vul(r) e viv - dv + V = dv ) . (4.37)
A% \%

32




THE UNIVERSITY OF MICHIGAN

7133-4-T

1 1 i
Now using the facis that V== = -V -~ and u: and u: are both potential functions we

R vR
obtain
e 1 Vvu: ( i‘v) 1 Vvu:( IA.v)
- LM = v -k _ A= o - — o ———
Vxg(r) = Vulri- -V |V, R Y V)Y R &
\Y Vi
(4.38)

Now we use Gauss' theorem, taking care of the signs of the normals (7 on B is al-

ways directed into V, the exterior) to obtain
ng(r)" Vu(r)+‘—V [VBu (r ) v u(rB)]dB. (4.39)

Actually there is another surface integral term over a large sphere at infinity but
this vanishes by vir:iue of {4.30). The integral in (4.39) vanishes because of the
boundary condition (4.32) thus verifying that

ngt(f) = Vuf(?) , TeV .

We may cast 'g'l(?) in slightly more convenient form as follows. Again

1
using the fact that V% = -V -ﬁ , (4.34) becomes
A a 1 1 €,a 1 1 i
= w e — V - g o 0
gl( r) o Vv ®* vul(rv) dv = VvR X Vv ul(rv) dv, (4.40)
7 A%

or since curl of the gradient is identically zero,

Vvuj (?v) 1 Vvu;( PV)
T)=-— —_—dv - — Vx—— dv. .
gl(r) o va R dv yom o = dv (4.41)

\' V.
i
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Now employing a famous, but apparently nameless theorem of vector analy-

sis,

VxAdv = fixAds (S encloses V and n is out of S),

equation (4.41) becomes

nx v ot )-v u(rl
N [B i B B
gl(r)—‘” dB ., 1>0 (4.42)
B
An alternate form of {4.42) is found to be
u (T, )- u(r Hn
2(P) = -vx [f 2 B] (4.43)

{ 47
B

Again the behavior of wvu®

" at infinity, (4.30), causes a similar integral over a

large sphere to vanish.

In this form it is clear that the tangential components of Vu;3 and Vu; on B

must be unequal if g l is to be different from zero. In fact they are necessarlly dis-

continruous, Since ul is a potential function regular exterior to B, ul

tial function regular interior to B and their normal derivatives were defined to be

is a poten-

continuous at B, then the tangential derivatives cannot also be continuous. If so,
u; would be a continuation into the interior of B of uj. The resulting function
would be a potential function regular everywhere in space and therefore would nec-
essarily be zero. But u‘: (see eqn. 4.21) is not identically zero.

We have thus determined a particular él such that (4.12) is satisfied. This
in turn guarantees that equation (4.11) holds, thai is, with the 'g'ﬂ we have found we

may write
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R
'EVX R dB+gl=le. (4.11)

With equation (4. 34) or (4. 43) which expresses El as a curl, it follows upon taking
the divergence of (4.11) that

On expanding 1/R in (4.43) it follows that

El(.?) = O(l/rz) as r—m
i, 2
Also Vx dB = O{1/r") as r-—m

R

hence d/l is regular in the sense of Kellog. (Actually le =0(1f r2) does not imply
completely that wz is regular. There may be an additive constant which would im-
ply !rc/zll is uot bounded. Since we are interested in Vg//l, which removes this
constant anyway, we may choose it as zero to begin with and take q’zf to be regular.)
With equation (4.9) and the boundary conditions (4.2) we may formulate a

stan. ird exterior Neumann potential problem for ¢,, namely

Vzwl =0 reV
¢, regular at infinity in the sense of Kellog (4.44)
oy
1 - -
n- vy, == = <-B- ;nc-ﬁ G,+
(T=T r=?B :
ol nxVB(ul -uf)l
4r R |
Jla
r

=
The solution of this problem then determines H 1!( r).
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To summarize the procedure we have established:

If an electromagnetic field,
©
2 - =h: - i a 2 - 1 .
By =) B!, B - ) B! @
1=0

is incident on a smooth finite perfectly conducting surface B in three space then the

coefficients in the low frequency expansion of the scattered field

® @
<1
- 2 - 1 2 a = ., {
B = _>_ E(P)k) H(T) = E H (F)Nik) (4.46)
1 £
1=0 1=0
are given by
< - — IS +
E/(T) (1) V¢z (4.47)
E— = - e o +
Hi(r) l(r) gl(r) V¥, (4.48)
where
1 £-1
F () =- L ooy Ay Apine pm-1 o 1 1
£ 4n m! -m 47 /— m!
m:O m—O
B
£
AxH Rm'ldB—-l—Z—l-v 8-8  R™ 4B, 1>0
f-m-1 4 m! f-m
m=1
B B
(4.49)
) o (i
Fo(r) = - Z;VX B dB
B
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L_‘ 1-1
2 a1 1 m-1,_ 1 1 a_=inc  _m-1
(T) = -Vx :>_- 7 | BxH, RdB+ i | 8xE,_ R dB
m=1 =
B
510
+L D> Lo\ a e g™l 450
4r m! jB 1-
m=0
nc (4.50)
n 1 8- H:;n
Go(r) e v R dB
B
a e i
nxV_(u, -u,) A .
-~ ey o L B 1 ! _ 1 n, e i
gl(r) =2 R dB = - 47er R (“l ul)dB, £1>0
B B
g(F) =0 (4.51)
A -
n-E
€, __l_ -1
uf(r)- T W R dB , £>0 (4.52)
B
and u;, ¢ o and wl are all solutions of standard potential problems.
u;('f') is an interior Neumann potential:
Vzu; =0 T interior to B
(4.53)
A i A e
n-VuI—n Vul on B,
¢l is an exterior Dirichlet potential:
2
v ¢£ = 0 T exterior to B
¢1 reg at o (4.54)
A - A aine . )
nx V¢£ = -nx(E, " +F,) onB
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{(we must use a.E IdB = 0 to determine an arbitrary constant arising

from this form of the boundary condition),

and wl is an exterior Neumann potential:

V2¢11 =0 T exterior to B )
y’xl reg at @ (4.55)
ﬁ-vw!:-‘ﬁ-ﬁ;nc-ﬁ-é'fﬁ-?g‘! on B

f is the unit normal on B always pointing intn V, the exterior of B, and R is the

--

distance |'f— i"Bl from a point ry on the surface (the integration variables) to a
field point T.

We complete this section with a brief discussion of the low frequency expan-
sion of the far field. Here we proceed exactly as in the scalar case. We incorpor-

ate the facts that, for large r,

Q A - . A -»
eikR e1k(r-r~rB) eikR e1k(r-r rB)
g A
R ~ r ! 7 R ~ ikr r

in the Stratton-Chu integral representations of the scattered field, equations (3.4a)

and (3.4b), also employing the boundary conditions on the surface (3.12), obtaining

2 RL 'ﬂ‘%'?n A ~ine > An &
E(R)~ s e [—rx(ﬁxE )+'ﬁxH-?~n-E]dB (4.56)
B
. o A -
R elkrik -ikr. T . .

= [?x(axﬁ) +hxE 4+ 20 ﬁ“‘ﬂ dB  (4.57)
B

Now we expand the field quantities, equations (4.45) and (4. 46) and the factor
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-ik T - ?B
e and reorder the terms to find
m J 4
1kr l m
- M1 2
(r)N"""' z : (ik) (G20 (t- l m[rx( )
4nr (1-m)! m
1=0 m=0
B
+ ﬁxﬁm-’r‘ﬁ- i:'m]dB (4.58)
o)

ixr f-m
l"l"l (1) A - l-m r .y
H(F) ~— EI-O:(M Tomr |\ i [ Ex@xd )

+AxEDC, 2 ﬁ “laB  (4.59)
m Nl

—h

The £=0 term in (4.58) and (4. 59) always vanishes [the integrals n- Em dB

-l

and g o ﬁm are zero for all m, (equation 4.3) and, since E:)nc and H may
B

both be written as gradients of potertial functions, we may use a well known re-

sult of vector analysis which implies that Sﬁﬁx V#dB = 0, for B closed and any
# to see that S 6xﬁ0dB and SBﬁx ﬁ:)nch also vanish] . Therefore we may
B

rewrite (4.58) and (4.59) as

Hl

» elk[' 2 N (-UHl-m A =« J+l-m
E(Y)~ -7 k (ik) ~ ) (r-r.)
4rr =0 o (2+1-m)! B
B

= inc = l\ -
. [-?‘x(ﬁxEm )+ﬁxH EquB
(4.60)

and
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. &1
(%) ~ -ilsz EO :mo‘ E T . )t
4rr ~ —t (£+1-m)! B
£=0 m=0

B

R

= inc -inc
-[f'x(ﬁxH )+2axE +rn-H ]dB
m m m ¢

(4.61)

This illustrates a famous result of Rayleigh: the leading term in a low frequency
expansion of the far field is proportional to kz. Stevenson criticized this form as
being inefficient since one apparently needs to determine £+1 non-vanishing near
field terms in order to obtain £ non-vanishing far field terms. Actually this is not
completely true, as a close examination of the "extra' near field terms reveals.

These are the m = £+1 terms in (4.60) and (4.61), namely

A A inc A AA =
[—rx(anﬂ_l)+an£+1-rn EHJdB (4.62a)
B
and
(‘ A o » _=inc » =inc
) [rx(ﬁxHHl) +nXEH1 +Ph- Hﬂ_l]dB (4. 62b)
B

which we rewrite as

A A 2inc A A A 2
-rXx nXEH-I dB + nXx £+1dB-r n EhldB (4.63a)
B B
and
A > a _2inc A A ainc
J ) + °
¢x \ 8xH, dB+ \ DxE/[dB+T)| A H;H dB . (4.63b)
B B B
The terms involving the incident field are effectively known since the inci-
dent field is given. Also, from equation (3.14), f-E M dB = 0 and the only

B
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unknown part of these ""extra' terms invelves

R BXHHI dB . (4.64)
JB

With (4.48), however, it follows that
~

- ﬁxg‘mﬂ» ﬁwim)dB {4.65)

\
ﬁxHHIdB = J (nxGﬂ_l

B B

But S nx Vz/xﬂ_l dB = 0, using a vector identify we have employed before, and
B

éﬂl is given, (4.50), in terms of the first £ near field terms. The only unknown
part of this "extra' term involves §H1 which does require the solution of an inter-
ior Neumann probiem see equations (4.51}-(4.53) . This is considerably less than
requiring complete determination of E &1 and HH-I' but is still unsatisfactory.
Repeated attempts to determine this "unknown" part without solving for §£+1 have
so far been fruitless. The alternatives are also less than overwhelmingly desirakle.
Stevenson provides a generzlization of Rayieigh's continuat.on method whereby the
near field terms for large r are matched with multipoles for small k (thus defining
the multipole moments) then using the far fields of the multipoles. This of course
involves expanding the near field terms in spherical harmonics which may involve
as much labor as solving the required interior Neumann problex‘:n. Still, in princi-
ple, Stevenson's methed of continuing into the far field is preferabie since it does
not require the solution of another, albeit simple, problem in order to obtain the
same number of terms in a low frequency expansion of the far field as are available
in a low frequency expaasion of the near field. The price is apparently requiring

both to be represented as expansions in spherical harmonics .
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‘Y
AN EXAMPLE—STATTERING BY A SPHERE
To illustrate the procedure derived in the previous section, we consider the
proolem of scattering of a linearly polarized plane wave by a sphere. The incident

field is taken to propagate down the z-axis, with Emc along the x-direction (see

Fig.2), i.e.
a2 !
sinc _ A -ikz _S . Lainc =inc_ (-z) »
E = 1xe = ,(1k) Ef , El = —-—"“ lx
£=0
(5.1)
D 1
- -3 1-.. a3 -
B - 4 kel ) T
y 10 Y
ai z
Hmc !
ﬁmc
rBza
y
X
Figure 2

We shall proceed to calculate the first two terms in the series for the scattered

field,
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[0 0] a
- § : 1 - E f=
E = {ik) El , B = (ik) Hl s
1=0 =0

by straightforward app:ication of equations {4.46) - (4.55).

5.1 Zeroth Order Terms

From (5.1) we see that

The scattered electric field to this order is (4. 47)

- - ® + v
Eo Fa ¢o
and (Eq. 4.49)
A_ND
. i nxi
F0 S =7 Vx R dB .
B
Equation (5.5), wriiten in its entirety is,
27 .4
F(#)=--Lvux \ af_ \ do_a’sing, -
o 4r B B B
0 0
A A
raxi

r2 + 32 - 2ar E:osecose +8indsind_cos(f - ¢Bﬂ

B B

A ~ A
i = + : 3 +3
where the unit normal is g ?x sinf cos ¢B iy sind_sin ¢B i cosf .

The integration is carried out using the well known expansion of 1/R in

spherical harmonics and we find (using a mixture of rectangular and spherical unit

vectors)
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A

i

F(P) = a° (5.7)
(] X

wl®e

1
f-3

Hwb‘

r

Now we use (4.54) to find ¢o. The boundary condition

axvp = -Ax(ETC+F) r=a (5.8)
o o o

is seen to imply that

g

2a .
o - ‘== ginfcos P+e .

3 (5.9

r=a

The exterior potential function taking on this bovndary value is found to be (write §
a

as a series expansion n-I:I Pn(cos v¥) whose unknown coefficients are deter-
r

n:
mined using the boundary condition),

3
2 a ac
= = — gj + -—
¢° 3 3 sindcos § = (5.10)
T
Substituting (5.7) and (5.10) in (5.4) we find
2 33x A 3 A ac
E°=o 2 T-3L-5F (5.11)
r r r
The auxilliary condition
3-E =0 (5.12)
o
B
implies, with (5.11), that
c=0, (5.13)

To find ﬁo we see {Eqs. 4.48, 4.51) that
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-b -
H =G +Ww
(0] o o

From (4. 50)
A ﬁinc
g =Ly ©_ 4B
o 4 R
vp
and
R -
o y
from which

v, (Eq. 4.55) is an exterior potential function with boundary values

_aosnc aa _aa 10 (a2
----r-H0 —r-Go--r-y 3ar( )

1 a3
o= ool i
v 5 3 sinfsin
r
which, with (5.14) and (5.17) leads to
R 3 A 3
a2 .1 (..x) iy, 3ays
o 2 3 3 2 4
2r r

THE UNIVERSITY OF MICHIGAN

£5.

(5.

(5.

(5.

-
(¥}

(5.

14)

15)

16)

17)

.18)

.19)

20)

The zeroth order results may be rewritten entirely in terms of spherical unit vec-

tors as
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2 3 A3
E = i2a° sinfcos - 62 cosfcos f+§ - sin (5.21)
o 3 3 3
r r r
. a3 a g3 a3
H = =-sindsinf-6 — cosfsinf-Pp — cosf . (5.22)
o 3 3 3
r 2r 2r

5.2 First Order Terms
The next terms are found using these results, again following the procedure

of the preceding section. It is to be noted that even at this stage, the calculations
become tedious, With (4.49) we see that

- 1 ﬁXE;nc 1 inc 1(‘ x‘
- - o — —_ _ A iy 2
F = -5-Vx R dB- Vx| 8xECdB+ - JB =
B B
- 9\4a 2 4B (5.23)
4n o

All terms are well defined, i:o and fio in (5.21) and (5.22) above and E:“" and

ﬁinc in (5.1), namely

1
gloe _4 g . i . (5.24)
o X 1 X

Carrying out the indicated integrations we find

5
+ = (21 +x%
5 . 55( 1 XIZ) (5.25)

Now we use (4.54) to find ¢1. The boundary condition

ﬁxV¢l = -ﬁx(i:linc+f1) , r=a

is seen to imply
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2 2
¢1 = %%— cosfsin26+c = - a P;(coee)cosﬁ +c (5. 26)

10
r=a
Here we employ the definition of the associated Legendre functions given by Magnus
and Oberheitinger (1949). The exterior potential function taking on these boundary

values is found to be

5

§ = - --e-l----Pl(cozzé?)cosﬁ-'r-a-tE . (5.27)
1 10r3 2 r

Forming ﬁl with (4.47), and applying the auxilliary condition SBﬁ 0 El dB =0

which implies ¢ = 0, we fiad

3 R 1 5
=k A
= o —— + -
E zrxi ZV\ (5.28)

Proceeding to the determination of H we see that (Eq. 4.48)

1

- b Y
= s + s
With (4. 50)
A =ing¢ A 2inc
r_ xE r_+H
- 1 A - 1 B o 1 B 1
= — + — + — -
G1 y Vx erHOdB y R dB 2 v R dB
B B
1 A aine
o — .
yy v rB Ho 4B ., (5.30)
B

All the quantities involved have already been defined in (5.1) and (5.22). Carrying
out the integration yields
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To determine g, we must first find u_ and ui. From {4.52)

ool

-

u py ] R (5.32)
B
which, with {5,21), may be evaluated as
e 2 a3 1

u =3 -;5 Pl(cose)cos¢ (5.33)

Following (4. 53) we determine the interior potential function whose normal deriva-

tive matches that of ui on the boundary. Here we assume a series of the form

2 a r Pn(cos 9) and determine the a using the boundary condition. In the pre-
n'—'-
sent case, this is easily seen to be

bll § rP (cose)cos¢ (5.34)
With (4, 51) we see that
1 nx VB(ui - u; )
g1 i = dB (5.35)

and using the expressions (5.33) and (5.34" this may be found explicitiy as

= Z .g_.n 'y 15 2
& = -3 3 rxix . ‘5, 26)

a ]

Now we proceed using (4. 55) to find an exterior poteniial function, d/l, satisfying

the boundary condition

1 = _g.§m°_3.61+ﬁ.gl ] (5.37)*
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With (%.1), (5.31) and (5. 36), this boundary condition becomes

*—-wl = -2 4 sinBeososi p== 2a
or 3 1 }
| r=a

T 2(0086) sinf.

and the solution is found to be

2a5 1 2 S
Y, = - —— P_(cosf)sind = 3 Yz
1 3 2 5
45r 15r

Substituting (5.31), (5.35) ard (5.39) in (5.29) we obtain

3 5
ﬁ = ?‘xf +-=V ayz
1 X 5

r

v-xwla:
O e

The first order terms may be written entirely in spherical coordinates as

. 5 5 K
E = -22 sinfcosfcosPr + | = cos 26+ 3= cos¢6
1 r 4 2

r or Py

- cosasin¢( )
\2r r

oo fw

5 9 3
H = -2 sinfcosbsinf T+ | 2= cos20+ 2= | sinp 8
1 4 4 2
r 3r r
a3 a5 A
+ cosfcos P -—2-+-—>¢
4
r 3r

THE UNIVERSITY OF MICHIGAN —m——m

{5.38)

(5.39)

(5. 40)

(5.41)

(5.42)

These results for the first two terms in the low frequency expansion may be shown

to be in complete agreement with comparable expressions derived from the standard)

Mie series.
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